Cancer Therapy: Preclinical Inhibition of DNA Double-Strand Break Repair by the Dual PI3K/mTOR Inhibitor NVP-BEZ235 as a Strategy for Radiosensitization of Glioblastoma
نویسندگان
چکیده
Purpose: Inhibitors of the DNA damage response (DDR) have great potential for radiosensitization of numerous cancers, including glioblastomas, which are extremely radioand chemoresistant brain tumors. Currently, there are no DNA double-strand break (DSB) repair inhibitors that have been successful in treating glioblastoma. Our laboratory previously demonstrated that the dual phosphoinositide 3-kinase/mTOR inhibitor NVP-BEZ235 can potently inhibit the two central DDR kinases, DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and ataxia-telangiectasia mutated (ATM), in vitro. Here, we tested whether NVP-BEZ235 could also inhibit ATM and DNA-PKcs in tumors in vivo and assessed its potential as a radioand chemosensitizer in preclinical mouse glioblastoma models. Experimental Design: The radiosensitizing effect of NVP-BEZ235was tested by following tumor growth in subcutaneous and orthotopic glioblastomamodels. Tumorswere generated using the radioresistantU87vIII glioma cell line and GBM9 neurospheres in nude mice. These tumors were then treated with ionizing radiation and/or NVP-BEZ235 and analyzed for DNA-PKcs and ATM activation, DSB repair inhibition, and attenuation of growth. Results:NVP-BEZ235 potently inhibited both DNA-PKcs and ATM kinases and attenuated the repair of ionizing radiation–induced DNA damage in tumors. This resulted in striking tumor radiosensitization, which extended the survival of brain tumor–bearing mice. Notably, tumors displayed a higher DSB-load when compared with normal brain tissue. NVP-BEZ235 also sensitized a subset of subcutaneous tumors to temozolomide, a drug routinely used concurrently with ionizing radiation for the treatment of
منابع مشابه
Inhibition of DNA double-strand break repair by the dual PI3K/mTOR inhibitor NVP-BEZ235 as a strategy for radiosensitization of glioblastoma.
PURPOSE Inhibitors of the DNA damage response (DDR) have great potential for radiosensitization of numerous cancers, including glioblastomas, which are extremely radio- and chemoresistant brain tumors. Currently, there are no DNA double-strand break (DSB) repair inhibitors that have been successful in treating glioblastoma. Our laboratory previously demonstrated that the dual phosphoinositide 3...
متن کاملInhibition of autophagy as a strategy to augment radiosensitization by the dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235.
We investigated the effect of 2-methyl-2-{4-[3-methyl-2-oxo-8-(quinolin-3-yl)-2,3-dihydro-1H-imidazo[4,5-c]quinolin-1-yl]phenyl} propanenitrile (NVP-BEZ235) (Novartis, Basel Switzerland), a dual phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) inhibitor currently being tested in phase I clinical trials, in radiosensitization. NVP-BEZ235 radiosensitized a variety of canc...
متن کاملPI3K and mTOR inhibitor, NVP-BEZ235, is more toxic than X-rays in prostate cancer cells
Background: Radiotherapy and adjuvant androgen deprivation therapy have historically been the first treatment choices for prostate cancer but treatment resistance often limits the capacity to effectively manage the disease. Therefore, alternative therapeutic approaches are needed. Here, the efficacies of radiotherapy and targeting the pro-survival cell signaling components epidermal growth fact...
متن کاملPediatric and adult glioblastoma radiosensitization induced by PI3K/mTOR inhibition causes early metabolic alterations detected by nuclear magnetic resonance spectroscopy
Poor outcome for patients with glioblastomas is often associated with radioresistance. PI3K/mTOR pathway deregulation has been correlated with radioresistance; therefore, PI3K/mTOR inhibition could render tumors radiosensitive. In this study, we show that NVP-BEZ235, a dual PI3K/mTOR inhibitor, potentiates the effects of irradiation in both adult and pediatric glioblastoma cell lines, resulting...
متن کاملPI3K/Akt/mTOR and CDK4 combined inhibition enhanced apoptosis of thyroid cancer cell lines
Introduction Thyroid cancer is a malignant disease with poor prognosis. The PI3K/Akt/mTOR and Cyclin-Dependent Kinase 4 (CDK4) pathways are vital regulators of tumor cell proliferation and survival. Therefore the present study was designed to use dual inhibition of such pathways to kill thyroid cancer cells. Methods and materials The effects of each inhibitors on human ATC and...
متن کامل